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Abstract
It is shown that the modified Emden-type equation in the title belongs to
a class of Liènard’s equations that may be mapped into separable Abel’s
equations, and are therefore integrable. First integrals for equations of this
class are easily derived (there are three of them, corresponding to three distinct
dynamical regimes), and integrated, to yield parametric representations of the
corresponding solutions.

PACS numbers: 02.30.Hq, 02.30.Ik, 05.45.−a

Recent work by Chandrasekar et al [1] (CH07 herafter) has focused on the modified Emden-
type equation

ẍ + αxẋ + βx3 = 0, (1)

a special case of the Liénard equation (LE hereafter),

ẍ + f (x)ẋ + g(x) = 0, (2)

of interest for the applications. In previous work [2], the authors of CH07 had shown
integrability of (1) for α2 � 8β, without giving the corresponding solutions. In CH07, they
complete their analysis of (1), proving integrability for α2 < 8β and constructing solutions
over the whole parameter space. In order to do so, they use a method by Duarte et al [3]—which
requires the solution of a system of nonlinear pde’s—to obtain first integrals not explicitly
dependent on time, for the three cases α2 < 8β, α2 = 8β and α2 > 8β. Then, judging the first
integrals very difficult to integrate directly, they use appropriate Hamiltonian formulations to
derive the explicit solution for α2 = 8β, and implicit solutions for the other two cases.

Here, we note that a complete characterization of the solutions of (1) can be obtained
more easily by exploiting the basic connection between the LE and the Abel equation (AE
herafter). Following this route naturally leads to the three distinct dynamical regimes and to the
corresponding first integrals, and allows one to integrate the first integrals in a straightforward
manner. In the following, we shall use this approach to construct a parametric solution for a
whole class of LE’s, that includes (1), and other interesting LE’s with polynomial coefficients,
as special cases.
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It is well known that the transformation

ẋ ≡ dx

dt
= ξ(x) (3)

maps (2) into the AE of the second kind

ξξ ′ + f (x)ξ + g(x) = 0, ′ ≡ d

dx
, (4)

which has been widely investigated. A general condition for the separability of (4) was given
by Liouville [4]. A special case of Liouville’s condition, of interest for our problem, is(

g

f

)′
= δf, (5)

with δ an arbitrary constant. When (5) is satisfied, the change of dependent variable

ξ = g

f

1

w
(6)

yields the separable equation

w′ = f 2

g
w(w2 + w + δ). (7)

Thus, (5) identifies a class of LE’s that are mapped by (3) into separable AE’s, and are therefore
integrable. Clearly, (1) belongs to this class, since its coefficients satisfy (5), with δ = 2β/α2.

The solution for this class of equations may be easily computed. Separating dependences
from w and x, making further use of (5), and integrating on both sides of (7), gives

I (w) ≡
∫

dw

w(w2 + w + δ)
= 1

δ

∫
dx

f∫
dx f

= 1

δ

∫
d

(
log

∫
dx f

)
. (8)

The integral I (w) is given by (see, e.g., [5])

I (w) = 4

[
1

2w + 1
− log

2w + 1

w

]
, � = 0, (9)

I (w) = 1

2δ

[
log w2 − log W − 1√

�
log

2w + 1 − √
�

2w + 1 +
√

�

]
, � > 0, (10)

I (w) = 1

2δ

[
log w2 − log W − 2√−�

tan−1

(
2w + 1√−�

)]
, � < 0, (11)

where

W ≡ w2 + w + δ, � ≡ 1 − 4δ. (12)

Thus, three different dynamical regimes are naturally obtained, corresponding to the cases in
which the discriminant � of the quadratic polynomial W is vanishing, positive, or negative,
respectively. In the case of (1), this translates into α2 = 8β, α2 > 8β and α2 < β, the three
regimes of CH07.

If we now recall that

w = g(x)

f (x)

1

ẋ
, (13)

and note that the integration in (8) involves an arbitrary constant, it becomes clear that (8) is
none other than a first integral for the class of LE’s in consideration (in fact, three of them, for
the three different regimes). In the case of (1), (13) takes the form

w = β

α

x2

ẋ
, (14)
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and the rhs of (8) yields

α2

β
log x + C, (15)

with C an arbitrary constant. Replacing (14) in (9)–(11), and the resulting expressions, together
with (15), in (8), immediately yields the first integrals (2)–(4) of CH07.

At this point, one can either use a Hamiltonian approach, as in CH07, or directly construct
an implicit solution as follows. Once I (w) is computed, integration of the rhs of (8) gives
an expression of

∫
dx f (x) in terms of w and of an arbitrary constant C. If

∫
dx f (x) is an

invertible function of x, one can then compute

x = x(w,C). (16)

Replacing this expression in (3), one gets

1

δ

w∫
dx f

dx

dw
(w,C) dw = dt, (17)

which, upon integration, yields

t − t0 = 1

δ

∫
dw

w∫
dx f

dx

dw
, (18)

with t0 the second integration constant. Together with (16), (18) provides a parametric
representation of the general integral of the class of LE’s with coefficients satisfying (5).

An interesting equation that belongs to this class is a natural generalization of (1),

ẍ + αxqẋ + βx2q+1 = 0, (19)

with q a real number. Integrability of special cases of (19) has been discussed in [2] and [6].
But since (19) belongs to the class (5), with δ = (q +1)β/α2, it is in fact integrable for arbitrary
values of the parameters. The three dynamical regimes for this equation are determined by
the relative sizes of α2 and 4(q + 1)β. Integrating (8) gives

x = x0 exp

[
β

α2
I (w)

]
, (20)

with x0 an integration constant, and replacing this result in (18) we find

t − t0 = x
−q

0

α

∫
dw

1

W(w)
exp

(
−qβ

α2
I (w)

)
. (21)

Once the corresponding forms of W(w) and of I (w) are inserted, (21) yields a parametric
representation of the general integral of (19), for arbitrary values of the parameters α, β and q.

Finally, we note that the transformation

x = eλτ v, t = − 1

γ
e−γ τ ; γ = qλ, (22)

maps (19) into

d2v

dτ 2
+ [αvq + (q + 2)λ]

dv

dτ
+ βv2q+1 + αλvq+1 + λ2(q + 1)v = 0, (23)

which provides a direct generalization of one of the integrable equations obtained in [2]
(equation (16)). Another integrable case [2, equation (12)] is obtained from (23) by taking

β = 0, α = k1, λ = k2. (24)

Equation (15) of [2] also has coefficients satisfying (5), and is therefore integrable. However,∫
f (x) cannot be inverted, in general, for the latter equations, and explicit expressions of the

integral (18) cannot be derived analytically.
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To summarize, we can say that the main purpose of this comment is to draw attention
to the basic, fruitful connection between the LE and the AE, sometimes neglected in recent
literature. We do not mean to be critical about the application of new methods, such as that
introduced in [3]; we only wish to underline that before using a more complicated approach,
it is useful to know exactly what old methods, such as those here reminded, may provide.
Besides, the connection between the LE and the AE could also be used in the other direction:
new integrable cases of the LE, obtained, for example, by using the methods employed in
[1, 2], could provide new, nontrivial solvable cases of the AE.
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